Reference genes selection for transcript normalization in kenaf (Hibiscus cannabinus L.) under salinity and drought stress.
نویسندگان
چکیده
Kenaf (Hibiscus cannabinus) is an economic and ecological fiber crop but suffers severe losses in fiber yield and quality under the stressful conditions of excess salinity and drought. To explore the mechanisms by which kenaf responds to excess salinity and drought, gene expression was performed at the transcriptomic level using RNA-seq. Thus, it is crucial to have a suitable set of reference genes to normalize target gene expression in kenaf under different conditions using real-time quantitative reverse transcription-PCR (qRT-PCR). In this study, we selected 10 candidate reference genes from the kenaf transcriptome and assessed their expression stabilities by qRT-PCR in 14 NaCl- and PEG-treated samples using geNorm, NormFinder, and BestKeeper. The results indicated that TUBα and 18S rRNA were the optimum reference genes under conditions of excess salinity and drought in kenaf. Moreover, TUBα and 18S rRNA were used singly or in combination as reference genes to validate the expression levels of WRKY28 and WRKY32 in NaCl- and PEG-treated samples by qRT-PCR. The results further proved the reliability of the two selected reference genes. This work will benefit future studies on gene expression and lead to a better understanding of responses to excess salinity and drought in kenaf.
منابع مشابه
Reference Gene Selection for qRT-PCR Normalization Analysis in kenaf (Hibiscus cannabinus L.) under Abiotic Stress and Hormonal Stimuli
Kenaf (Hibiscus cannabinus L.), an environmental friendly and economic fiber crop, has a certain tolerance to abiotic stresses. Identification of reliable reference genes for transcript normalization of stress responsive genes expression by quantitative real-time PCR (qRT-PCR) is important for exploring the molecular mechanisms of plants response to abiotic stresses. In this study, nine candida...
متن کاملCharacterization of Developmental- and Stress-Mediated Expression of Cinnamoyl-CoA Reductase in Kenaf (Hibiscus cannabinus L.)
Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI) of 6.27 (JX524276, HcCCR2). BLA...
متن کاملPlant Growth Retardation and Conserved miRNAs Are Correlated to Hibiscus Chlorotic Ringspot Virus Infection
Virus infection may cause a multiplicity of symptoms in their host including discoloration, distortion and growth retardation. Hibiscus chlorotic ringspot virus (HCRSV) infection was studied using kenaf (Hibiscus cannabinus L.), a non-wood fiber-producing crop in this study. Infection by HCRSV reduced the fiber yield and concomitant economic value of kenaf. We investigated kenaf growth retardat...
متن کاملMolecular Characterization of Ferulate 5-Hydroxylase Gene from Kenaf (Hibiscus cannabinus L.)
The purpose of this study is to clone and characterize the expression pattern of a F5H gene encoding ferulate 5-hydroxylase in the phenylpropanoid pathway from kenaf (Hibiscus cannabinus L.). Kenaf is a fast-growing dicotyledonous plant valued for its biomass. F5H, a cytochrome P450-dependent monooxygenase (CYP84), is a key enzyme for syringyl lignin biosynthesis. The full length of the F5H ort...
متن کاملReproduction of Four Races of Meloidogyne incognita on Hibiscus cannabinus.
The feasibility of cultivation of kenaf (Hibiscus cannabinus) in the United States is receiving a multifaceted evaluation. Among the factors being evaluated is kenafs susceptibility to nematodes. In this investigation, four races of Meloidogyne incognita reproduced extensively on each of the several kenaf genotypes examined in greenhouse tests. Some genotypes of kenaf, however, demonstrated lim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PeerJ
دوره 3 شماره
صفحات -
تاریخ انتشار 2015